(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

power(x', Cons(x, xs)) → mult(x', power(x', xs))
mult(x', Cons(x, xs)) → add0(x', mult(x', xs))
add0(x', Cons(x, xs)) → Cons(Cons(Nil, Nil), add0(x', xs))
power(x, Nil) → Cons(Nil, Nil)
mult(x, Nil) → Nil
add0(x, Nil) → x
goal(x, y) → power(x, y)

Rewrite Strategy: INNERMOST

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

power(x', Cons(x, xs)) → mult(x', power(x', xs))
mult(x', Cons(x, xs)) → add0(x', mult(x', xs))
add0(x', Cons(x, xs)) → Cons(Cons(Nil, Nil), add0(x', xs))
power(x, Nil) → Cons(Nil, Nil)
mult(x, Nil) → Nil
add0(x, Nil) → x
goal(x, y) → power(x, y)

S is empty.
Rewrite Strategy: INNERMOST

(3) SlicingProof (LOWER BOUND(ID) transformation)

Sliced the following arguments:
Cons/0

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

power(x', Cons(xs)) → mult(x', power(x', xs))
mult(x', Cons(xs)) → add0(x', mult(x', xs))
add0(x', Cons(xs)) → Cons(add0(x', xs))
power(x, Nil) → Cons(Nil)
mult(x, Nil) → Nil
add0(x, Nil) → x
goal(x, y) → power(x, y)

S is empty.
Rewrite Strategy: INNERMOST

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

Innermost TRS:
Rules:
power(x', Cons(xs)) → mult(x', power(x', xs))
mult(x', Cons(xs)) → add0(x', mult(x', xs))
add0(x', Cons(xs)) → Cons(add0(x', xs))
power(x, Nil) → Cons(Nil)
mult(x, Nil) → Nil
add0(x, Nil) → x
goal(x, y) → power(x, y)

Types:
power :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
mult :: Cons:Nil → Cons:Nil → Cons:Nil
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
gen_Cons:Nil2_1 :: Nat → Cons:Nil

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
power, mult, add0

They will be analysed ascendingly in the following order:
mult < power
add0 < mult

(8) Obligation:

Innermost TRS:
Rules:
power(x', Cons(xs)) → mult(x', power(x', xs))
mult(x', Cons(xs)) → add0(x', mult(x', xs))
add0(x', Cons(xs)) → Cons(add0(x', xs))
power(x, Nil) → Cons(Nil)
mult(x, Nil) → Nil
add0(x, Nil) → x
goal(x, y) → power(x, y)

Types:
power :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
mult :: Cons:Nil → Cons:Nil → Cons:Nil
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
gen_Cons:Nil2_1 :: Nat → Cons:Nil

Generator Equations:
gen_Cons:Nil2_1(0) ⇔ Nil
gen_Cons:Nil2_1(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_1(x))

The following defined symbols remain to be analysed:
add0, power, mult

They will be analysed ascendingly in the following order:
mult < power
add0 < mult

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
add0(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n4_1)) → gen_Cons:Nil2_1(+(n4_1, a)), rt ∈ Ω(1 + n41)

Induction Base:
add0(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(0)) →RΩ(1)
gen_Cons:Nil2_1(a)

Induction Step:
add0(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(+(n4_1, 1))) →RΩ(1)
Cons(add0(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n4_1))) →IH
Cons(gen_Cons:Nil2_1(+(a, c5_1)))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

Innermost TRS:
Rules:
power(x', Cons(xs)) → mult(x', power(x', xs))
mult(x', Cons(xs)) → add0(x', mult(x', xs))
add0(x', Cons(xs)) → Cons(add0(x', xs))
power(x, Nil) → Cons(Nil)
mult(x, Nil) → Nil
add0(x, Nil) → x
goal(x, y) → power(x, y)

Types:
power :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
mult :: Cons:Nil → Cons:Nil → Cons:Nil
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
gen_Cons:Nil2_1 :: Nat → Cons:Nil

Lemmas:
add0(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n4_1)) → gen_Cons:Nil2_1(+(n4_1, a)), rt ∈ Ω(1 + n41)

Generator Equations:
gen_Cons:Nil2_1(0) ⇔ Nil
gen_Cons:Nil2_1(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_1(x))

The following defined symbols remain to be analysed:
mult, power

They will be analysed ascendingly in the following order:
mult < power

(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
mult(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n518_1)) → gen_Cons:Nil2_1(*(n518_1, a)), rt ∈ Ω(1 + a·n51812 + n5181)

Induction Base:
mult(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(0)) →RΩ(1)
Nil

Induction Step:
mult(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(+(n518_1, 1))) →RΩ(1)
add0(gen_Cons:Nil2_1(a), mult(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n518_1))) →IH
add0(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(*(c519_1, a))) →LΩ(1 + a·n5181)
gen_Cons:Nil2_1(+(*(n518_1, a), a))

We have rt ∈ Ω(n3) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n3).

(13) Complex Obligation (BEST)

(14) Obligation:

Innermost TRS:
Rules:
power(x', Cons(xs)) → mult(x', power(x', xs))
mult(x', Cons(xs)) → add0(x', mult(x', xs))
add0(x', Cons(xs)) → Cons(add0(x', xs))
power(x, Nil) → Cons(Nil)
mult(x, Nil) → Nil
add0(x, Nil) → x
goal(x, y) → power(x, y)

Types:
power :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
mult :: Cons:Nil → Cons:Nil → Cons:Nil
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
gen_Cons:Nil2_1 :: Nat → Cons:Nil

Lemmas:
add0(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n4_1)) → gen_Cons:Nil2_1(+(n4_1, a)), rt ∈ Ω(1 + n41)
mult(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n518_1)) → gen_Cons:Nil2_1(*(n518_1, a)), rt ∈ Ω(1 + a·n51812 + n5181)

Generator Equations:
gen_Cons:Nil2_1(0) ⇔ Nil
gen_Cons:Nil2_1(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_1(x))

The following defined symbols remain to be analysed:
power

(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
power(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(+(1, n1170_1))) → *3_1, rt ∈ Ω(n11701)

Induction Base:
power(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(+(1, 0)))

Induction Step:
power(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(+(1, +(n1170_1, 1)))) →RΩ(1)
mult(gen_Cons:Nil2_1(a), power(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(+(1, n1170_1)))) →IH
mult(gen_Cons:Nil2_1(a), *3_1)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(16) Complex Obligation (BEST)

(17) Obligation:

Innermost TRS:
Rules:
power(x', Cons(xs)) → mult(x', power(x', xs))
mult(x', Cons(xs)) → add0(x', mult(x', xs))
add0(x', Cons(xs)) → Cons(add0(x', xs))
power(x, Nil) → Cons(Nil)
mult(x, Nil) → Nil
add0(x, Nil) → x
goal(x, y) → power(x, y)

Types:
power :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
mult :: Cons:Nil → Cons:Nil → Cons:Nil
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
gen_Cons:Nil2_1 :: Nat → Cons:Nil

Lemmas:
add0(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n4_1)) → gen_Cons:Nil2_1(+(n4_1, a)), rt ∈ Ω(1 + n41)
mult(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n518_1)) → gen_Cons:Nil2_1(*(n518_1, a)), rt ∈ Ω(1 + a·n51812 + n5181)
power(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(+(1, n1170_1))) → *3_1, rt ∈ Ω(n11701)

Generator Equations:
gen_Cons:Nil2_1(0) ⇔ Nil
gen_Cons:Nil2_1(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_1(x))

No more defined symbols left to analyse.

(18) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n3) was proven with the following lemma:
mult(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n518_1)) → gen_Cons:Nil2_1(*(n518_1, a)), rt ∈ Ω(1 + a·n51812 + n5181)

(19) BOUNDS(n^3, INF)

(20) Obligation:

Innermost TRS:
Rules:
power(x', Cons(xs)) → mult(x', power(x', xs))
mult(x', Cons(xs)) → add0(x', mult(x', xs))
add0(x', Cons(xs)) → Cons(add0(x', xs))
power(x, Nil) → Cons(Nil)
mult(x, Nil) → Nil
add0(x, Nil) → x
goal(x, y) → power(x, y)

Types:
power :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
mult :: Cons:Nil → Cons:Nil → Cons:Nil
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
gen_Cons:Nil2_1 :: Nat → Cons:Nil

Lemmas:
add0(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n4_1)) → gen_Cons:Nil2_1(+(n4_1, a)), rt ∈ Ω(1 + n41)
mult(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n518_1)) → gen_Cons:Nil2_1(*(n518_1, a)), rt ∈ Ω(1 + a·n51812 + n5181)
power(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(+(1, n1170_1))) → *3_1, rt ∈ Ω(n11701)

Generator Equations:
gen_Cons:Nil2_1(0) ⇔ Nil
gen_Cons:Nil2_1(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_1(x))

No more defined symbols left to analyse.

(21) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n3) was proven with the following lemma:
mult(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n518_1)) → gen_Cons:Nil2_1(*(n518_1, a)), rt ∈ Ω(1 + a·n51812 + n5181)

(22) BOUNDS(n^3, INF)

(23) Obligation:

Innermost TRS:
Rules:
power(x', Cons(xs)) → mult(x', power(x', xs))
mult(x', Cons(xs)) → add0(x', mult(x', xs))
add0(x', Cons(xs)) → Cons(add0(x', xs))
power(x, Nil) → Cons(Nil)
mult(x, Nil) → Nil
add0(x, Nil) → x
goal(x, y) → power(x, y)

Types:
power :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
mult :: Cons:Nil → Cons:Nil → Cons:Nil
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
gen_Cons:Nil2_1 :: Nat → Cons:Nil

Lemmas:
add0(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n4_1)) → gen_Cons:Nil2_1(+(n4_1, a)), rt ∈ Ω(1 + n41)
mult(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n518_1)) → gen_Cons:Nil2_1(*(n518_1, a)), rt ∈ Ω(1 + a·n51812 + n5181)

Generator Equations:
gen_Cons:Nil2_1(0) ⇔ Nil
gen_Cons:Nil2_1(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_1(x))

No more defined symbols left to analyse.

(24) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n3) was proven with the following lemma:
mult(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n518_1)) → gen_Cons:Nil2_1(*(n518_1, a)), rt ∈ Ω(1 + a·n51812 + n5181)

(25) BOUNDS(n^3, INF)

(26) Obligation:

Innermost TRS:
Rules:
power(x', Cons(xs)) → mult(x', power(x', xs))
mult(x', Cons(xs)) → add0(x', mult(x', xs))
add0(x', Cons(xs)) → Cons(add0(x', xs))
power(x, Nil) → Cons(Nil)
mult(x, Nil) → Nil
add0(x, Nil) → x
goal(x, y) → power(x, y)

Types:
power :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
mult :: Cons:Nil → Cons:Nil → Cons:Nil
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
gen_Cons:Nil2_1 :: Nat → Cons:Nil

Lemmas:
add0(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n4_1)) → gen_Cons:Nil2_1(+(n4_1, a)), rt ∈ Ω(1 + n41)

Generator Equations:
gen_Cons:Nil2_1(0) ⇔ Nil
gen_Cons:Nil2_1(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_1(x))

No more defined symbols left to analyse.

(27) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
add0(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n4_1)) → gen_Cons:Nil2_1(+(n4_1, a)), rt ∈ Ω(1 + n41)

(28) BOUNDS(n^1, INF)